Given an integer array nums
, return true
if there exists a triple of indices (i, j, k)
such that i < j < k
and nums[i] < nums[j] < nums[k]
. If no such indices exists, return false
.
Example 1:
Input: nums = [1,2,3,4,5] Output: true Explanation: Any triplet where i < j < k is valid.
Example 2:
Input: nums = [5,4,3,2,1] Output: false Explanation: No triplet exists.
Example 3:
Input: nums = [2,1,5,0,4,6] Output: true Explanation: The triplet (3, 4, 5) is valid because nums[3] == 0 < nums[4] == 4 < nums[5] == 6.
Constraints:
1 <= nums.length <= 5 * 105
-231 <= nums[i] <= 231 - 1
class Solution {
public boolean increasingTriplet(int[] nums) {
int first = Integer.MAX_VALUE ;
int second = Integer.MAX_VALUE ;
int third = Integer.MAX_VALUE ;
for(int i=0;i=ele){
first = ele ;
}else if ( second >= ele){
second = ele ;
}else {
third = ele ;
return true ;
}
}
return false ;
}
}
class Solution {
public:
bool increasingTriplet(vector& nums) {
int size=nums.size();
if(size<3)return false;
int smallest=INT_MAX;
int middle=INT_MAX;
for(int i=0; imiddle)return true;
else if(nums[i]>smallest and nums[i]
In this program, we have to reverse the order of words, but keeping the word’s direction in the same way. Only the words will be interchanged.
In this program, the goal is to find out if there are three numbers in this list such that one is smaller than the other and the other is smaller than the next. Then we call this an “increased triplet subsequence.”
An increasing triplet subsequence is a set of three numbers (i, j, and k) such that ‘nums(i) < nums(j) < nums(k).
Let’s see the approach step-by-step:
Inside the loop, it checks three conditions:
Office:- 660, Sector 14A, Vasundhara, Ghaziabad, Uttar Pradesh - 201012, India